Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system
Hongcheng Li,
Dan Yang,
Huajun Cao,
Weiwei Ge,
Erheng Chen,
Xuanhao Wen and
Chongbo Li
Energy, 2022, vol. 239, issue PC
Abstract:
Advances in energy-saving technology is main way to achieve carbon neutrality. With the development of digital twin, building the physical-virtual data space for improving energy management capacity of enterprises has received tremendous attention. The energy behaviour model implementing accurate simulation and prediction of energy state is the core meta-model of energy-efficient manufacturing digital twin (EMDT). The widely used state-based energy modelling assumes constant power in operation state and approximately fits the energy behaviour without considering uncertain operation environment, resulting in energy behaviour distortion. A data-driven hybrid petri-net (DDHPN) inspired by both the state-based energy modelling and machine learning was developed for establishing the energy behaviour meta-model. Gaussian kernel extreme learning machine is proposed to fit the instantaneous firing speed of energy consumption continuous transitions in DDHPN. DDHPN-based energy behaviour model is driven by physical data under real-time working conditions, operating parameters, and production load for generating a virtual data space of energy management. Finally, DDHPN was integrated into the EMDT model using unified modelling language. The application in extrusion process and die casting process show that the presented model has higher accuracy in energy behaviour prediction. Furthermore, a digital-twin-based energy management prototype system for extrusion workshop demonstrates its potential.
Keywords: Energy management; Energy behaviour modelling; Digital twin; Data-driven hybrid petri-net; Gaussian kernel extreme learning machine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221024269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024269
DOI: 10.1016/j.energy.2021.122178
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().