Ensemble offshore Wind Turbine Power Curve modelling – An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm
Tenghui Li,
Xiaolei Liu,
Zi Lin and
Rory Morrison
Energy, 2022, vol. 239, issue PD
Abstract:
Offshore wind energy is drawing increased attention for the decarbonization of electricity generation. Due to the unpredictable and complex nature of offshore aero-hydro dynamics, the Wind Turbine Power Curve (WTPC) model is an important tool for power forecasting and, hence, providing a reliable, predictable, and stable power supply. With the development of data-driven approaches, the Artificial Neural Network (ANN) has become a popular method for estimating WTPCs. This paper integrates the Isolation Forest (iForest), Nonsymmetric Fuzzy Means (NSFM) Radial Basis Neural Network (RBFNN), and metaheuristic algorithm to form a novel WTPC model. iForest performed anomaly detection and removal, NSFM RBFNN approximated the WTPC, and the metaheuristic solved NSFM optimization without training RBFNN. Four real-world datasets were used to assess the performance of NSFM RBFNN. According to multiple evaluation metrics and the Diebold-Mariano test, the accuracy of NSFM RBFNN was significantly better than the other competitive neural network-based methods. Additionally, NSFM RBFNN was shown to be more robust to anomalies than competitors, which is highly beneficial for practical applications.
Keywords: Offshore wind power; Wind turbine power curve (WTPC); Radial basis function neural network (RBFNN) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221025883
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025883
DOI: 10.1016/j.energy.2021.122340
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().