Engine performance fueled with jojoba biodiesel and enzymatic saccharification on the yield of glucose of microbial lipids biodiesel
Milos Milovancevic,
Yousef Zandi,
Abouzar Rahimi,
Nebojša Denić,
Vuk Vujović,
Dragan Zlatković,
Ivana D. Ilic,
Jelena Stojanović,
Snežana Gavrilović,
Mohamed Amine Khadimallah and
Vladan Ivanović
Energy, 2022, vol. 239, issue PD
Abstract:
The study's major purpose was to find the best predictors for biodiesel efficiency based on emission variables and using jojoba oil as a fuel. Given the importance of biodiesel in reducing carbon dioxide emissions, a more thorough examination of such engines is required. As a result, the study's major goal was to use a selection technique to determine the best predictors for brake thermal efficiency (%), unburnt hydrocarbons (ppm vol.) and oxides of nitrogen (ppm vol.) of the biodiesel engine. For such a purpose several factors are selected and analyzed. The input variables are blending (%), fuel injection timing (obTDC), fuel injection pressure (bar) and engine load (%). The analyzing procedure was performed by adaptive neuro fuzzy inference system (ANFIS) and all available parameters are included. The ANFIS model could be used as simplification of the analysis since there is no need for knowledge of internal physical and chemical characteristics of the biodiesel engine. The results from the function clearly indicate that the input attribute “Engine load” (RMSE = 1.8002) is the most influential for the brake thermal efficiency. Furthermore, the input attribute “Fuel injection pressure” (RMSE = 4.2620) is the most influential for the unburnt hydrocarbons. “Engine load” (RMSE = 4.7484) is the most influential for the oxides of nitrogen. In this paper, an adaptive neuro fuzzy inference system (ANFIS) was used to develop a prediction approach for determining the influence of hydrolysis time, cellulase loading, b-Glucosidase loading, substrate loading and working volume on the enzymatic saccharification on the yield of glucose. The ideal combination of two input attributes or two predictors for enzymatic saccharification on glucose yield was discovered to be “substrate loading” and “working volume” (RMSE = 4.1625). The findings could be useful in reducing the cost of the procedure by optimizing enzymatic saccharification on glucose response yield.
Keywords: Biodiesel; Jojoba oil; Engine emission; Enzymatic saccharification; Glucose (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221026396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026396
DOI: 10.1016/j.energy.2021.122390
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().