A numerical and statistical implementation of a thermal model for a lithium-ion battery
Ugur Morali
Energy, 2022, vol. 240, issue C
Abstract:
Lithium-ion batteries are substantial technologies to improve energy storage. If a detailed understanding of thermal behavior for a range of operating conditions is achieved, lithium-ion batteries can be used more effectively in various applications. This study focuses on the effect of ambient temperature, discharge rate, depth-of-discharge, and convective heat transfer coefficient on the maximum battery temperature and maximum battery temperature difference of a commercially available LiMn2O4 prismatic battery. The statistical evaluation showed that the ambient temperature with the delta value of 0.55 was the most influential discharge parameter while the effect of the depth-of-discharge on the maximum battery temperature can be neglected. The maximum battery temperature difference is dominated by the C-rate with the delta value of 15.5399 and the convective heat transfer coefficient with the delta value of 4.2624. More attention is paid to both the C-rate and the convective heat transfer coefficient to simultaneously control and improve the maximum battery temperature and maximum battery temperature difference due to they fulfilled the requirement for a significance level of 95%. The statistical results provide unique insights into the difficult-to-determine effect of the discharge parameters that are closely monitored and controlled to improve the battery thermal management systems.
Keywords: Lithium-ion battery; Battery thermal model; Maximum battery temperature; Statistical method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027353
DOI: 10.1016/j.energy.2021.122486
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().