EconPapers    
Economics at your fingertips  
 

Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms

Yuanjin Xu, Fei Li and Armin Asgari

Energy, 2022, vol. 240, issue C

Abstract: Since cooling and heating loads are regarded as significant parameters to examine the energy performance of buildings, the need to predict and analyze them for the residential buildings seems to be undeniable. Hence, the present paper wants to optimize the multi-layer perceptron neural network using several optimization methods to predict the heating and cooling of energy-efficient buildings. The dataset used in this study consists of eight independent factors: surface area, wall area, roof area, relative compactness, overall height, orientation, glazing area, and glazing area distribution. To prove the reliability and accuracy of the obtained results, test and training data are also considered. According to the statistical results, biogeography-based optimization has the highest value of R2 and the lowest values of RMSD, normalized RMSD, and MAE in both training data and test data for cooling and heating loads. Hence, the forecasting accuracy of the proposed MLP neural network optimized with the BBO optimization algorithm with the RMSD, R2, and MAE of 2.82, 0.920, 2.15 in the training phase of heating load and with the RMSD, R2, and MAE of 3.18, 0.887, 2.97 in the training phase of the cooling load is much better than those of the other models.

Keywords: Biogeography-based optimization; Cooling and heating load; Evolutionary algorithms; Energy-efficient buildings; Neural network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221029418
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029418

DOI: 10.1016/j.energy.2021.122692

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029418