Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house
Yuhao Wang,
Ke Qu,
Xiangjie Chen,
Xingxing Zhang and
Saffa Riffat
Energy, 2022, vol. 241, issue C
Abstract:
An increasing interest rises in assessing building electrification pathways under the constraints of grid stability, costs, and carbon. Meanwhile, Deep Energy Retrofitting (DER) has been recognised as a pivotal strategy towards building decarbonisation, offering tremendous benefits in reducing energy consumption, tackling climate change, and enhancing residents’ comfort and well-being. However, hurdles for the massive market uptake of DER exist with relatively low cost-effectiveness, limited retrofit funding/government incentives and low end-user motivations. This paper adopts a holistic approach to evaluate and compare two retrofit strategies: Holistic-decarbonised Electrification Retrofit (HER) VS DER from the perspectives of costs, carbon, grid stability and overheating potentials. A 1940s British post-war dwelling with initial energy consumption of 396.6 kWh/m2 is chosen as the case study to perform the analysis. This research also brings forward three load shifting strategies (i.e. fabric thermal insulation, renewables and battery storage) and investigates their impacts on enhancing grid stability and security. Results reveal that adopting the HER strategy can reduce lifetime carbon emissions up to 99%, higher than that from the DER strategy (i.e. 78%). From the ROI perspective, the HER strategy is more attractive than the DER strategy, with an initial investment of £184/m2 and a payback period of 14 years.
Keywords: Building retrofit; Electrification; Deep energy retrofit; Grid stability security; Decarbonisation; Masonry house (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221031844
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031844
DOI: 10.1016/j.energy.2021.122935
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().