A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk
Dian-ce Gao,
Yongjun Sun,
Xingxing Zhang,
Pei Huang and
Yelin Zhang,
Energy, 2022, vol. 243, issue C
Abstract:
Net-zero energy buildings (NZEBs) are considered as a promising method to mitigating the energy problems. Due to the intermittent characteristics of renewable energy (e.g., solar energy), NZEBs need to frequently exchange energy with the grid, which imposes severe negative impacts on the grid especially the overvoltage risk. Both planning and design are essential for reducing NZEB connected grid overvoltage, but most existing studies isolated the efforts from planning to design, thereby failing to achieve the best cumulative result. More importantly, existing studies oversimplified overvoltage quantification by using aggregated power interactions to represent overvoltage risk, which cannot consider the complex voltage influences among grid nodes. Due to the isolated efforts and the quantification oversimplification, existing studies can hardly achieve overvoltage risk minimization. Therefore, this study proposes a novel GA (genetic algorithm)-based method in which the key planning and design parameters are optimized sequentially for mitigating the overvoltage risk. Meanwhile, distribution network model has been adopted to precisely quantify the grid overvoltage. The study results show that the proposed method is highly effective in reducing NZEB cluster connected grid overvoltage risk. The proposed method can be used in practice for improving NZEB cluster planning and system design as grid interaction is considered.
Keywords: Net-zero energy building; Renewable energy; System design; Grid interaction; Genetic algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221033004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033004
DOI: 10.1016/j.energy.2021.123051
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().