Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning
Ya-Xiong Wang,
Zhenhang Chen and
Wei Zhang
Energy, 2022, vol. 244, issue PB
Abstract:
Accurate estimation of the state-of-charge (SOC) of lithium-ion batteries is a key technique for automotive battery management systems to overcome the non-linearity and complications of practical applications. The data-driven approach for estimating SOC requires a large number of training samples and costly input. To this end, an improved gated recurrent unit (GRU)-based transfer learning SOC estimation is proposed for small target sample sets. To ensure the completeness and consistency of data features, Lagrangian interpolations and standard normalization are used for analyzing the open-source battery datasets. The source domain GRU model is pre-trained to obtain rich battery characteristics with the preprocessed datasets; the GRU hidden unit structure can be enhanced, and it is advantageously used in conjunction with transfer learning. Moreover, weight parameters of the source domain are transferred to the GRU model of target batteries. The experimental results show that the proposed improved GRU-based transfer learning can use small target samples to achieve fast and accurate SOC estimations by ordinary computing hardware. In particular, the RMSEs are 1.115%, 1.867%, and 1.141% under dynamic conditions, 32 °C-FUDS, 36 °C-US06, and 50 °C-UDDS, respectively. The proposed method demonstrates the potential of SOC estimation using small target samples-based big data techniques in practice.
Keywords: State-of-charge (SOC); Open-source battery datasets; Deep learning; Gated recurrent unit (GRU); Source domain model; Transfer learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000810
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000810
DOI: 10.1016/j.energy.2022.123178
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().