EconPapers    
Economics at your fingertips  
 

A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources

S.A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M.S. Javadi, A. Esmaeel Nezhad and J.P.S. Catalão

Energy, 2022, vol. 245, issue C

Abstract: This paper presents a new framework for the scheduling of microgrids and distribution feeder reconfiguration (DFR), taking into consideration the uncertainties due to the load demand, market price, and renewable power generation. The model is implemented on the modified IEEE 118-bus test system, including microgrids and smart homes. The problem has been formulated as a two-stage model, which at the first stage, the day-ahead self-scheduling of each microgrid is carried out as a two-objective optimization problem. The two objectives include the minimization of the total operating cost and maximization of the consumer's comfort index. Then, the solution, obtained from the first stage is delivered to the distribution system operator (DSO). Then, at the second stage, the DSO determines the optimal configuration of the system with the aim of minimizing operating costs of the main grid and the penalty of deviating from microgrid scheduling. Note that the penalty is due to the difference in power exchange requested by the microgrids from the power exchange finalized by the DSO. The presented two-stage optimization problem is modeled in a mixed-integer linear programing (MILP) framework with four case studies, and solved in GAMS by using the GURUBI solver. The simulation results show that in the cases the DSO is able to reconfigure the system, the deviation from the optimal scheduling of microgrids would be considerably lower than the cases with fixed system configuration.

Keywords: Multi-objective optimization; Distribution feeder reconfiguration; Microgrids; Renewable energy resources; Smart homes; Consumers' comfort index (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001311
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001311

DOI: 10.1016/j.energy.2022.123228

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001311