Analysing the potential of a simulation-based method for the assessment of CO2 savings from eco-innovative technologies in light-duty vehicles
Susana Gil-Sayas,
Dimitrios Komnos,
Chiara Lodi,
Davide Currò,
Simone Serra,
Alberto Broatch and
Georgios Fontaras
Energy, 2022, vol. 245, issue C
Abstract:
Mandatory targets are set in Europe for Carbon Dioxide (CO2) emissions of light-duty vehicles. EU law recognises the potential of certain innovative technologies to contribute to reducing CO2 emissions. Vehicle systems and innovations are becoming increasingly complex, and the accurate quantification of their benefits increasingly difficult. The study investigates the potential of the CO2MPAS simulator to serve this purpose. Two innovative technologies were studied, Light-emitting diode (LED) lighting systems, efficient alternators (EA), and their combination. The model was validated on detailed test results from eight vehicles. A total of 452 passenger cars, for which test data were available, were subsequently simulated using CO2MPAS simulator. The mean simulated CO2 savings was 0.91gCO2/km (LED lights), 0.98 gCO2/km (EA), and 1.78 gCO2/km (combined). Results show that simulated CO2 savings were comparable to those calculated using the existing standardised method. For gasoline and diesel vehicles respectively, the difference in CO2 savings between simulated and existing method was 2.8% and 0.14% in the LED lights case, and 0.6% and 0.67% in the alternator case. In the combined case, the difference was calculated to be 1.7% and 0.34%. Similar approaches could be used in the future for accurately capturing the benefits of more complex technologies.
Keywords: CO2 emission; Vehicles; Light-emitting diodes; Efficient alternator; Eco-innovation; CO2MPAS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001414
DOI: 10.1016/j.energy.2022.123238
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().