Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System
Joël M. Zinsalo,
Louis Lamarche and
Jasmin Raymond
Energy, 2022, vol. 245, issue C
Abstract:
This paper presents a coupled Wellbore-Reservoir-Organic Rankine Cycle (ORC) power plant model for sustainable and efficient use of multiple-fractures Enhanced Geothermal System with simulations conducted over 40 years of operation time. A multi-objective optimization of the ORC under off-design conditions was conducted using constrained NSGA-II technique considering specific investment cost, energy and exergy efficiencies as objective functions. Twenty working fluids were considered to select the best one based on the turbine inlet superheated vapor condition, the lowest specific investment cost, the best energy and exergy efficiencies. Optimal operations conditions were determined for each working fluid considering turbine inlet temperature, turbine inlet pressure, condenser temperature, refrigerant mass flow rate, and length, tubes number, inner diameter and outer diameter of evaporator and condenser, isentropic turbine efficiency, isentropic pump efficiency as decision variables. The results show that the working fluids have a significant effect on the reinjection geofluid temperature and slight effect on the production temperature. The best performing working fluid was R1233zd(E) providing an energy efficiency of 19.2–19.32% and the exergy efficiency found is between 56.4% and 58.44% over the 40 years of production in off-design conditions and optimal operation conditions. The energy efficiency and the exergy efficiency decrease with increasing condenser temperature.
Keywords: Organic rankine cycle (ORC); Multi-objective optimization; NSGA-II; Enhanced geothermal systems (EGS); Exergy efficiency; Energy management (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001621
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001621
DOI: 10.1016/j.energy.2022.123259
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().