EconPapers    
Economics at your fingertips  
 

Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to high load

Wenbin Zhao, Shijie Mi, Haoqing Wu, Yaoyuan Zhang, Qiankun Zhang, Zhuoyao He, Yong Qian and Xingcai Lu

Energy, 2022, vol. 246, issue C

Abstract: This research work studied the mode switching between ICCI low temperature combustion and conventional CI combustion in a single-cylinder diesel engine. The combustion characteristics during the mode switching process with various control parameters, such as injection timing, numbers, duration, exhaust gas recirculation (EGR) rates, were detailed analyzed at medium and high engine loads. Experimental results show that the smoothness mode switching between ICCI combustion and CI combustion can be achieved within one cycle after switching another combustion mode at medium and high engine loads, and less fluctuation of IMEP is observed. At medium load, there is a wide range of butanol energy ratio (EButanol) to achieve smooth mode transition with stable combustion. However, at high engine load, higher EButanol and earlier biodiesel second direct injection timing are inadequate for the mode transition because of the higher combustion noise. EGR strategy is used to improve the smoothness of CA50 and exhibit NOx emissions. It is not needed the cycle-by-cycle injection modulation to achieve the smoothness of CA50 and the same level of NOx emissions when the EGR rate is 34.2% under ICCI combustion and 37.6% under CI combustion, respectively, with insignificant changes of IMEP and acceptable maximum pressure rise rate.

Keywords: ICCI combustion; Conventional CI combustion; Mode transition; Combustion characteristics; Diesel engine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222003176
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003176

DOI: 10.1016/j.energy.2022.123414

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-17
Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003176