Thermo-electrical performance assessment of a partially submerged floating photovoltaic system
Nabil A.S. Elminshawy,
Amr Osama,
Amany M. Saif and
Giuseppe Marco Tina
Energy, 2022, vol. 246, issue C
Abstract:
The floating photovoltaic (FPV) is characterized by the possibility to keep the PV cell at a reduced temperature compared to Land-Based Photovoltaic (LBPV) but this reduction is not so large. However, in hot climate, the working temperature of the FPV could rise enough to act negatively on the productivity. The present article focuses on assessing the performance of a partially submerged photovoltaic (PSPV) system planned to be deployed over Egypt's northern lakes. The PSPV is a new modification of the FPV system that was experimentally investigated under the Egyptian weather conditions in the present study. The above PSPV module was tested with various submerged ratios (y) of 5, 10, and 20%, defined as the ratio of the submerged portion to the module's length. It was concluded that the average surface temperatures of the PSPV module were lower than those of the reference LBPV module. By reducing the working temperature of the PSPV module at (y = 10%) by 11.10%, a power gain of 18.20% over the LBPV module was achieved. The cost per unit of produced electricity (LCOE) for the PSPV module was reduced by 7.52%, from 0.063 to 0.059 ($/kWh), by raising the submerged ratio from 5% to 10%.
Keywords: Solar radiation; Floating photovoltaic; Electrical performance; Passive cooling; Efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222003474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003474
DOI: 10.1016/j.energy.2022.123444
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().