EconPapers    
Economics at your fingertips  
 

Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon

Chunxiang Chen, Dianzhao Fan, Jian Zhao, Qianhao Qi, Xiaodong Huang, Tianyang Zeng and Yingxin Bi

Energy, 2022, vol. 247, issue C

Abstract: The microwave-assisted co-pyrolysis of Chlorella vulgaris (C. vulgaris) and high-density polyethylene (HDPE) was analyzed by adding activated carbon (AC) as microwave absorbent. The co-pyrolysis characteristics of C. vulgaris/HDPE under different mixing ratios (1:0, 4:1, 2:1, 1:1, 1:2 and 1:4) and the effects of different AC amounts (10%, 20%, 30%, 40% and 50%) on the co-pyrolysis were studied. The results show that the C. vulgaris/HDPE = 1:1 (C1HP1) was the optimal mixing ratio while the 40% AC was the best addition with greatly improving the co-pyrolysis characteristics of the C1HP1. Moreover, the hydrocarbons and alcohols in bio-oil of the C1HP1 group increased significantly due to the participation of HDPE, while the nitrogen-containing compounds decreased by 75.75% compared with the Pure C. vulgaris (PC) group by promoting the formation of NH3 and HCN. With the addition of 40% AC to C1HP1, the hydrocarbons in bio-oil increased to 48.88%, and the oxygen-containing compound decreased by 45.62% compared with the PC group by promoting the formation of H2O, CO and CO2. In general, the participation of HDPE and AC improve the pyrolysis characteristics of C. vulgaris and have a good denitrification and deoxygenation effect on bio-oil.

Keywords: Chlorella vulgaris; High-density polyethylene; Microwave-assisted co-pyrolysis; Thermogravimetric; Bio-oil (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422200411X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:247:y:2022:i:c:s036054422200411x

DOI: 10.1016/j.energy.2022.123508

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:247:y:2022:i:c:s036054422200411x