Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM
Xiang Chen,
Kun Ding,
Jingwei Zhang,
Wei Han,
Yongjie Liu,
Zenan Yang and
Shuai Weng
Energy, 2022, vol. 248, issue C
Abstract:
Accurate photovoltaic (PV) power prediction can guarantee the stable operation of a power system. However, complex environmental factors contribute to the chaotic nature of PV power sequences, consequently affecting the prediction accuracy. In this paper, an online PV power prediction model is proposed based on chaotic characteristic analysis, improved particle swarm optimization (PSO), and kernel-based extreme learning machine (KELM). The proposed method includes data pre-processing, offline parameters extraction and online prediction. At first, historical data are classified according to the degree of fluctuation of PV power and seasonal characteristics. The PV power sequences are filtered by singular spectrum analysis (SSA) to eliminate noise and outliers. Then, extracted parameters include the decomposing modes of variational mode decomposition (VMD) and the ideal parameters of phase space reconstruction (PSR) and KELM. The ideal parameters are searched by improved PSO. Finally, during the online prediction process, the training data needs to be reconstructed using VMD and PSR to update the network of KELM at each point prediction. Chaotic characteristic analysis is reflected in the application of SSA, VMD and PSR. Compared with the other seven different prediction methods, the experimental results verify that the proposed method is effective with higher accuracy.
Keywords: Photovoltaic power; Chaotic characteristic analysis; Data pre-processing; Parameters extraction; Online prediction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222004777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004777
DOI: 10.1016/j.energy.2022.123574
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().