Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model
Feifeng Jiang,
Jun Ma,
Zheng Li and
Yuexiong Ding
Energy, 2022, vol. 249, issue C
Abstract:
Prediction of building energy performance is a critical strategy for building energy management. Extant studies established city-scale prediction models only based on buildings with energy data. However, building energy data in most cities is limited, which may impair model performance. A large number of unlabeled buildings (without energy data) may reveal important energy use knowledge, but few studies have explored their capability to improve building energy prediction. Therefore, a novel semi-supervised deep learning method, namely dynamically updated multi-fold semi-supervised learning method based on deep neural networks (DUMSL-DNN) is proposed to predict building energy use intensity (EUI) by utilizing unlabeled samples. Manhattan is selected as a case study, which contains 4854 labeled samples and 34,456 unlabeled samples. Compared with the optimal DNN model, DUMSL-DNN can improve building EUI prediction with root-mean-square error (RMSE) reduced by 9.36% and mean absolute error (MAE) reduced by 9.43%. The DUMSL method is superior to typical semi-supervised learning methods with the lowest RMSE of 0.5207 and the lowest MAE of 0.3325. By the implementation of DUMSL-DNN, more areas with high EUI are identified in Manhattan. Specifically, commercial buildings and residential buildings built before 1965 have higher EUI. Measures are accordingly proposed to improve building energy efficiency.
Keywords: Energy use intensity; Urban buildings; Unlabeled samples; Neural network; Semi-supervised learning; Spatial analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222005345
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005345
DOI: 10.1016/j.energy.2022.123631
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().