Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis
Muhammad Faizan Tahir,
Chen Haoyong and
Han Guangze
Energy, 2022, vol. 249, issue C
Abstract:
With the aim to meet customers diverse energy needs by an economical and ecological means, integrated energy system has become a popular choice. Amongst various integrated energy system coupling configurations, individual heating infrastructure entails painstaking attention due to rapid expansion. Individual heating network plays a massive role in carbonizing the atmosphere as traditionally individual heating demands are fulfilled by fossil fuel-fired (natural gas and coal) boilers. Recently, trend is heading towards the integration of energy efficient technologies like micro combined heat and power and heat pumps to replace fossil fuel boilers. However, individual heating performance evaluation is generally investigated by energy analysis that employs only the first law of thermodynamics, thereby exergy analysis assessment and its comparison with energy analysis become noteworthy to measure actual performance. In this work, energy and exergy analysis of the individual heating network of China for the year 2030 is performed under the framework of both laws of thermodynamics. The proposed work includes various technological options like Hydrogen fired micro combined heat and power, natural gas fired micro combined heat and power and heat pumps to replace the fossil fuel boilers intending to attain an economically viable and carbon-free environment. At first, energy and exergy efficiencies of the aforementioned heat producing components are computed and afterwards EnergyPLAN technical simulation strategy is employed to evaluate performance in terms of costs, CO2 emissions and primary energy supply. Subsequently, a comparison of both analysis is provided in order to present the difference between the two analysis which substantiates that exergy analysis provides inferior results than energy analysis as depicted in case 3 where heat pumps inclusion appears to be the most decarbonized alternative for energy analysis but corroborates vice versa for exergy analysis. However, exergy analysis complements the energy analysis that helps evaluating the actual performance of system in relation to climate change mitigation and cost-effectiveness.
Keywords: Energy analysis; Exergy analysis; Integrated energy system; Individual heating infrastructure; Heat pumps; Micro CHP (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222006569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006569
DOI: 10.1016/j.energy.2022.123753
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().