EconPapers    
Economics at your fingertips  
 

Holistic modelling and optimisation of thermal load forecasting, heat generation and plant dispatch for a district heating network

Matthias Finkenrath, Till Faber, Fabian Behrens and Stefan Leiprecht

Energy, 2022, vol. 250, issue C

Abstract: Efficient operation of district heating networks requires a precise forecasting of the thermal loads and an optimised dispatch strategy for the available generation and storage portfolio. This paper presents a holistic modelling and optimisation approach: first, detailed process modelling and optimisation of power plants and thermal storages; second, a numerical model for dispatch optimisation; and third, machine-learning-based load forecasting. The work is based on operating data from the district heating network of the city of Ulm in Germany. The paper presents the modelling, validation and simulation results of stationary and instationary process simulation for a biomass-fired combined heat and power plant. The analysis identifies a potential to integrate additional renewable power by “power-to-heat” technologies into different parts of the process. The economic benefit is quantified by mixed-integer linear programming optimisation applied to the district heating network. In order to allow for real-time dispatch optimisation, a machine-learning-based thermal load forecasting method was developed and evaluated, based on a 72-h forecast horizon. In addition, the economic impact of prediction uncertainties is analysed with the numerical dispatch optimisation tool.

Keywords: District heating; Dispatch optimisation; Process simulation; Machine learning; Load forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222005692
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:250:y:2022:i:c:s0360544222005692

DOI: 10.1016/j.energy.2022.123666

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222005692