EconPapers    
Economics at your fingertips  
 

Nuclear energy for district cooling systems – Novel approach and its eco-environmental assessment method

Hussein Abdulkareem Saleh Abushamah and Radek Skoda

Energy, 2022, vol. 250, issue C

Abstract: The high penetration of electric-driven cooling systems in supplying the growing space cooling needs leads to significant electricity consumption and carbon emissions in many countries. In this study, a heat-driven district cooling system implementing a nuclear heat source, namely Teplator, is proposed and evaluated compared with electric-driven district cooling. The evaluation method is from an energy planning or policy-making perspective regarding electricity consumption, carbon emissions, and economics. Heat sources, heat transmission, and absorption-based cooling plants represent the heat-driven approach. In contrast, electrical power plants, electricity transmission, and compression-based cooling plants represent the electric-driven. The developed economic method is based on specific costs and average technical parameters. The main costs of construction, fuel, O&M, carbon emission, and energy transmission are included. The proposed Scenario and four electric-driven Scenarios that use coal, gas, and nuclear-based electricity are evaluated. The base results supported by sensitivity analyses confirm the potential economic viability of the proposed system in the case of a reasonable heat transmission cost. For example, each MWc.h of cooling demand could be supplied with less cost of 34%, electricity reduction of 0.32 MWe.h, and carbon emission saving of 0.26t, compared with coal electric-based Scenario.

Keywords: District cooling and heating; Economic method; Nuclear energy; Carbon reduction; Electricity saving (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222007277
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007277

DOI: 10.1016/j.energy.2022.123824

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007277