Assessment of the overall energy performance of an SPD smart window in a hot desert climate
Abdelhakim Mesloub,
Aritra Ghosh,
Mabrouk Touahmia,
Ghazy Abdullah Albaqawy,
Badr M. Alsolami and
Atef Ahriz
Energy, 2022, vol. 252, issue C
Abstract:
In this study, the overall energy consumption and visual comfort of a switchable suspended particle device (SPD) smart window were investigated as part of the glazing integration of an adaptive building designed to consume less energy in a hot desert climate. A typical floor of a commercial office building in Riyadh was chosen for the energy and visual comfort simulation, which was based on Energy-Plus and Diva-for-Rhino software for cardinal orientation. A comprehensive simulation analysis of various state of SPD glazing, namely opaque (OFF), transparent (ON) and automated controlled (based on solar radiance: from 100w/m2 – 900w/m2), was conducted and the results were compared against traditional single glazing and double-glazing low emissivity (DG low-e) coated windows for reference. The simulation results indicated that switchable SPD smart windows (in the OFF and automated states) achieved a promising reduction of net energy by up to 58% against DG low-e, apart from at the northern orientation. Conversely, the opaque (OFF state) had a counterproductive impact on lighting energy consumption and visual comfort. Acceptable daylight autonomy (DA300lux) and Useful daylight illuminance (UDI100lux–2000lux) was observed for the SPD smart window in the ON and automated controlled states; moreover, it offered a significant reduction in daylight glare probability (DGP). Thus, controlled switchable SPD glazing can be a good alternative to standard glazing in a hot desert climate in terms of reducing energy use and providing visual comfort.
Keywords: SPD smart Window; Overall energy; Visual comfort; Hot desert climate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009768
DOI: 10.1016/j.energy.2022.124073
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().