EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application

Xiaojuan Niu, Ning Ma, Zhengkun Bu, Wenpeng Hong and Haoran Li

Energy, 2022, vol. 254, issue PA

Abstract: Supercritical CO2 Brayton cycle has the advantages of high thermoelectric conversion efficiency and compact structure. However, the high ambient temperature in the desert environment would reduce the cycle thermal efficiency. In this paper, three additive gases were mixed with CO2 to reduce the effect of ambient temperature on cycle efficiency. The thermodynamic analysis method based on the optimal split ratio was applied to evaluate the potential of CO2-based binary mixtures in the SPT systems application for the first time. Meanwhile, the impact of critical cycle parameters on system performance was analyzed and the internal connection of the phenomenon was investigated by discussing the exergy loss of each component under typical operating conditions. The results show that the optimal split ratio decreases with the increase of main compressor inlet temperature and turbine inlet pressure. The change of turbine inlet temperature has little effect on the optimal split ratio. CO2-propane has the potential for practical application because the pressure ratio has little effect on the optimal split ratio. Moreover, it is found that the thermal and exergy efficiencies of CO2-propane are increased by 2.34% and 1.51% compared with CO2 under typical operating conditions based on genetic algorithm optimization.

Keywords: Supercritical brayton cycles; CO2-Based binary mixtures; Solar power tower system application; Thermodynamic analysis; Genetic algorithm optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222011896
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011896

DOI: 10.1016/j.energy.2022.124286

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011896