The EPLANoptMAC model to plan the decarbonisation of the maritime transport sector of a small island
Daniele Groppi,
Benedetto Nastasi and
Matteo Giacomo Prina
Energy, 2022, vol. 254, issue PA
Abstract:
Islands have been identified as living labs for implementing innovative solutions so as to boost the green energy transition. In this context, energy modelling and planning are key to optimally design the future energy system and identify the most appropriate technologies for both power generation and energy system management. In this research, a Marginal Abatement Cost curve method, by means of the EPLANoptMAC model, is applied to identify the optimal energy mix for the island of Favignana, Italy. The optimisation uses the carbon avoidance cost as objective function in order to consider both environmental and economic aspects. In addition to standard technologies such as photovoltaic and battery energy storage demand response technologies that include the maritime transport and heating sectors are optimised. Particularly, the decarbonisation of the maritime transport sector is of utmost importance since it represents the biggest energy consumption and source of carbon dioxide emissions for small islands. Results show that photovoltaic is the main priority, followed by battery energy storages. Electric ferries are preferrable to hydrogen ones when enough renewable energy from photovoltaic is produced. The decarbonisation of the maritime transportation is preferable to the heating sector and is required to reach decarbonisation targets higher than 40%.
Keywords: Energy modelling; Energy planning; EPLANoptMAC; EnergyPLAN; Smart energy island; Smart energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222012452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222012452
DOI: 10.1016/j.energy.2022.124342
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().