Electrification of the industrial sector in 100% renewable energy scenarios
Peter Sorknæs,
Rasmus M. Johannsen,
Andrei D. Korberg,
Tore B. Nielsen,
Uni R. Petersen and
Brian V. Mathiesen
Energy, 2022, vol. 254, issue PB
Abstract:
Future renewable energy systems with high shares of variable renewable energy production must also include technologies and measures to balance these production fluctuations. This could be in the form of electricity storage, energy demand adaptation (also known as demand-side management), or sector coupling. Industry electrification couples electricity and industry sectors by replacing the fossil fuel demand with electricity demands, thus enabling further integration of renewable electricity and transitioning the hard-to-abate energy sector. The effects of electrification on 100% renewable energy systems are rarely investigated. When investigated, one 100% renewable energy system scenario is used, which is often created by the same author, actor or organisation and may result in a narrow view of the possibilities for future energy systems. This study quantifies the role of industry electrification in the context of different 100% renewable energy system scenarios created by different relevant actors, to identify how its role may differ based on the scenario investigated. It is found that direct electrification of industrial process heat demands should be favoured over, e.g., a fuel shift to hydrogen-based process systems, even when these provide more flexibility.
Keywords: Energy system scenarios; EnergyPLAN; Smart energy systems; System flexibility; Industry electrification; Renewable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222012427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012427
DOI: 10.1016/j.energy.2022.124339
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().