EconPapers    
Economics at your fingertips  
 

Multi-energy coupling analysis and optimal scheduling of regional integrated energy system

Jianhui Wang, Jiangwei Mao, Ruhai Hao, Shoudong Li and Guangqing Bao

Energy, 2022, vol. 254, issue PC

Abstract: Two novel integrated models for power-to-gas (P2G) with carbon capture system (CCS) and hydrogen fuel cell (HFC) are proposed to further reduce the carbon emission of the integrated energy system (IES). First, a joint operation framework on the strength of P2G with CCS and HFC (PCH) is proposed. Then, based on PCH, two modeling and analysis methods of ‘setting gas with heat (SGWH)' and ‘setting energy with carbon (SEWC)' are proposed, under which two new integration models are established PCH under the SGWH (PCH_SGWH) and PCH under the SEWC (PCH_SEWC), and their electricity, heat, gas, and carbon coupling characteristics are analyzed. Finally, coupled with combined heat and power (CHP), gas boiler (GB), and energy storage (ES), an IES low-carbon economic dispatch model considering a carbon trading mechanism is constructed. The contribution of PCH and PCH_SGWH and PCH_SEWC to low-carbon operation is compared and verified by setting multiple operational scenarios. The simulation results show that compared with IES without PCH, IES with PCH_SGWH, and IES with PCH_SEWC can comprehensively improve the low-carbon economy of IES from the perspectives of wind power absorption, carbon generation, emission, and operating cost. Among them, IES with PCH_SEWC shows better performance, which can increase the wind power absorption rate by 21.96%, reduce carbon production and carbon emissions by 21.25% and 64.4%, and reduce operating costs by 44.7%.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013858
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013858

DOI: 10.1016/j.energy.2022.124482

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013858