EconPapers    
Economics at your fingertips  
 

Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG

Yang Luo, Linlin Li, Yiping Chen and Chang Nyung Kim

Energy, 2022, vol. 254, issue PC

Abstract: Thermoelectric (TE) generation technology plays an increasingly significant role in a global environment. A desirable approach to improve the efficiency of thermoelectric generator (TEG) is to segment the n- and/or p-leg into several parts with different materials for increasing the average thermoelectric figure of merit of the legs, and to operate with a relatively larger temperature gradient. In this study, a three-dimensional model is developed for the performance analysis of a segmented TEG, and the geometric design optimization of the TEG is examined numerically with the use of the temperature-dependent thermoelectric materials. Specifically, the temperature, heat flow, electric potential, electric current and Joule heating in the thermoelectric modules are investigated in detail. Also, the efficiency and effectiveness of the TEG is analyzed with the design variables such as the ratio of cross-sectional area of p-leg and n-leg, the length ratio of different materials in the segmented leg, and the geometry configurations of p- and n-legs. Furthermore, the effect of the contact resistance on the TEG performance is considered. The results show that a proper design of the geometric parameters can lead to an optimal design of thermoelectric generation systems with higher efficiency.

Keywords: Contact resistance; Thermoelectric generation; Optimal design; Efficiency; Effectiveness; Segmented legs (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013901
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013901

DOI: 10.1016/j.energy.2022.124487

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013901