Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture
Qingxi Huang,
Jinduo Yao,
Yukun Hu,
Shengchun Liu,
Hailong Li and
Qie Sun
Energy, 2022, vol. 254, issue PC
Abstract:
To compensate for the high cost of CO2 capture, this study proposes a novel solution that integrates a compressed CO2 energy storage (CCES) system into an oxy-coal combustion power plant with CO2 capture (Oxy_CCES). The integration of energy storage has the potential to create arbitrage from variations in electricity prices. The proposed Oxy_CCES system can achieve a higher net efficiency of 34.1%, and a higher exergy efficiency of 57.5%, than that of a liquified oxygen storage-integrated oxy-coal combustion power plant (Oxy_O2). Two scenarios, i.e., retrofitting an existing oxy-coal combustion power plant (S–I) and building a new plant (S-II), were established to compare the Oxy_CCES and Oxy_O2. In S–I, the payback time of the Oxy_CCES is one year and in the S-II the levelized cost of electricity (LCOE) of the Oxy_CCES increases by 1.8%, which is lower than that of the Oxy_O2. The sensitivity analysis shows that, when the difference between the peak and the valley electricity prices and the capacities of the energy storage systems increase by 50%, the net present value (NPV) and LCOE of the Oxy_CCES system increase by 113.4% and 1.7% respectively, which are lower than the NPV and LCOE increase of the Oxy_O2.
Keywords: Compressed CO2 energy storage; CO2 capture; Oxy-coal combustion; Time of use tariff; Carbon mitigation cost (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013962
DOI: 10.1016/j.energy.2022.124493
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().