Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network
Hengyi Zhu,
Peng Tan,
Ziqian He,
Cheng Zhang,
Qingyan Fang and
Gang Chen
Energy, 2022, vol. 255, issue C
Abstract:
Coordinated control of an ultra-supercritical (USC) boiler-turbine unit in the flexible-operation mode is challenging because of internal nonlinearity, various unknown disturbances, and the strong-coupled multivariable behavior of the unit. A novel nonlinear model predictive control (NMPC) approach is proposed to improve the flexibility of the USC unit, which introduces an input convex neural network (ICNN) to model the dynamics of the USC unit, and then computes the optimal control decisions by solving a convex model predictive control problem. Simulations are conducted on a 1000 MW USC boiler-turbine unit. The results demonstrate that the ICNN exhibits equivalent performance to a conventional neural network in learning the system dynamics. The root mean square errors of the throttle steam pressure, the separator steam enthalpy, and the power are 0.003 MPa, 0.162 kJ/kg, and 0.513 MW, respectively. In load tracking and disturbance rejection simulations, the proposed ICNN-based NMPC outperforms the linear model predictive control and conventional neural network-based NMPC. The ICNN-based NMPC provides a fast and stable load tracking capacity at a ramp rate of 10.8% MCR/min. Moreover, the superiority of the proposed approach is further confirmed by comparison with the internal-model robust adaptive control method, which is a state-of-the-art method. The proposed approach has good potential to improve the operational flexibility of USC power units.
Keywords: Nonlinear model predictive control; Input convex neural network; Ultra-supercritical boiler-turbine unit; Flexible operation; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013895
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013895
DOI: 10.1016/j.energy.2022.124486
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().