The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector
Juan Wang,
Ziming Li,
Tong Wu,
Siyu Wu and
Tingwei Yin
Energy, 2022, vol. 255, issue C
Abstract:
The decoupling of CO2 emissions from power generation is of great significance for China to accomplish the commitments of carbon peak and carbon neutral. However, the related studies in China's power sector are still limited. This paper aims to explore the decoupling relationship between CO2 emissions and power generation of China's power sector as well as the driving factors of decoupling index at provincial level using Tapio model and LMDI method. The decoupling analysis shows that Heilongjiang, Beijing, Shanghai, Sichuan and Yunnan achieved decoupling and most provinces were in expansive coupling states from 2000 to 2019. The number of provinces in decoupling state during 2011–2015 was twenty-three and larger than periods of 2000–2005, 2006–2010 and 2016–2019. The decomposition analysis indicates that per capita GDP and population size were responsible for inhibiting the decoupling process for most provinces, while thermal power generation efficiency and electricity intensity promoted the decoupling. Specifically, coal-to-gas of Beijing, renewable energy utilization of Gansu and expansion in nuclear energy of Hainan contributed more to their decoupling. Besides, this paper also explores the regional agglomeration of decoupling index across provinces based on global and local Moran's I Index, demonstrating that the spatial autocorrelation was significantly positive during 2016–2019.
Keywords: CO2 emissions; Decoupling analysis; LMDI method; Power sector; Spatial autocorrelation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013913
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013913
DOI: 10.1016/j.energy.2022.124488
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().