A cooling design for photovoltaic panels – Water-based PV/T system
Mehmet Ali Yildirim,
Artur Cebula and
Maciej Sułowicz
Energy, 2022, vol. 256, issue C
Abstract:
This paper proposes an innovative thermal collector for photovoltaic-thermal (PV/T) systems. The thermal behavior of the photovoltaic module and the designed cooling box flow are coupled to achieve the thermal and electrical conversion efficiencies of the water-based PV/T system. Different inlet mass flow rates and temperatures are simulated under normal operating cell temperature conditions (NOCT). The temperature distribution and average temperature of the photovoltaic module layers are investigated. The results show that when the mass flow rate is 0.014 kg/s, and the inlet flow temperature is 15 °C, the PV module reaches an electrical conversion efficiency of 17.79% with 76.13% of thermal efficiency. The designed cooling system exhibits better performance with a significant increase in thermal and electrical conversion efficiency compared to current solutions in the literature. The findings in this paper highlight the utility of PV/T systems and their massive potential to popularize the solar energy field and harvest thermal and electrical energy simultaneously.
Keywords: Photovoltaic-thermal systems (PV/T); Electrical conversion efficiency; Thermal efficiency; Solar energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222015572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015572
DOI: 10.1016/j.energy.2022.124654
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().