Optimal sizing and learning-based energy management strategy of NCR/LTO hybrid battery system for electric taxis
Junyan Niu,
Weichao Zhuang,
Jianwei Ye,
Ziyou Song,
Guodong Yin and
Yuanjian Zhang
Energy, 2022, vol. 257, issue C
Abstract:
This paper proposes an offline sizing method and an online energy management strategy for the electric vehicle with semi-active hybrid battery system (HBS). The semi-active HBS is composed by Nickel Cobalt Rechargeable (NCR) and lithium titanate (LTO) batteries with a bi-directional DC/DC converter. First, the vehicle dynamics and the HBS are modelled. Second, a hierarchical optimal sizing method is proposed to minimize the distance-based cost (DBC) of electric taxi in a variety of driving cycles. The lower layer optimizes the energy management strategy (EMS) with dynamic programming (DP), while the upper layer optimizes the sizes of HBS for minimum DBC. Based on the sizing results, the DBC decreases firstly and then increases with the increasing LTO size. In addition, the results of DP indicate the SOC of the LTO batteries works between 50% and 80% for optimal NCR lifespan. Third, by using the rule extracted from DP, a learning-based EMS, i.e., deep deterministic policy gradient (DDPG), is proposed with excellent real-time control potential. Finally, the simulation results show that the proposed DDPG EMS achieves the improved performance than fuzzy logic control EMS and closed result with what can be achieved through DP, yet the computation time is much less.
Keywords: Electric vehicle; Hybrid battery system; Optimal sizing; Energy management; Deep reinforcement learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222015560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015560
DOI: 10.1016/j.energy.2022.124653
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().