EconPapers    
Economics at your fingertips  
 

Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations

Jintao He, Lingfeng Shi, Hua Tian, Xuan Wang, Yonghao Zhang, Meiyan Zhang, Yu Yao, Jinwen Cai and Gequn Shu

Energy, 2022, vol. 257, issue C

Abstract: The CO2-based combined cooling and power system (CCP) is considered a promising solution for waste heat recovery due to its environmental protection and excellent performance. When it comes to refrigerated trucks' application, there are still critical challenges arising from the transient fluctuations of cold and heat sources. According to the poor correlation between the power sub-cycle and the refrigeration sub-cycle of the CCP system, this paper proposes various controls such as constant control and optimal control to control each cycle separately and achieve stable and optimized operation. The results show that the optimal pump speed and the split valve to limit exhaust control is an effective strategy for engine heat source fluctuations. Under the engine heat source slow step condition, the net work under this control is improved by 5%, and under the engine heat source transient condition, the net work under this control is only improved by 1.37%. In the case of cold sink fluctuations, the strategy of controlling the condensing pressure can reduce the maximum fluctuation of the cooling capacity from 5% under open-loop conditions to 2.5% under control. The above control methods can make the operation of the CCP system more stable and effective.

Keywords: Carbon dioxide; Combining cooling and power system; Optimal control; Constant control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422201619X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s036054422201619x

DOI: 10.1016/j.energy.2022.124716

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201619x