Investigation of a novel window solar air collector with 7-moveable absorber plates
Norhan I. Dawood,
Jalal M. Jalil and
Majida K. Ahmed
Energy, 2022, vol. 257, issue C
Abstract:
The focus of this paper is on a thermal performance of the window solar air collector with seven-moveable circular perforated absorbent plates that controlled manually. The proposed window solar air collector is a solar thermal system which can be employed to preheat the ventilation air supply and compromise between sunlight penetration to the desired buildings and hot air gain. In this work, five angles are selected (0 °, 30 °, 45 °, 60 °, and 90 °) and mathematical model and formulation based on the finite volume scheme (SIMPLE) algorithm has been implemented to solve the 3-D forced convection with turbulent flow. Different values of solar irradiance intensities (330, 530, and 730 W/m2) and air mass flow rates (0.0097, 0.0151, 0.0224, and 0.0298 kg/s) were adopted. The results found significant difference between air inlet and outlet temperatures are gained at angle 0° (vertical absorbent plates position) at irradiance 730 W/m2 and mass flow rate 0.0097 kg/s is 11.2 °C and the maximum thermal efficiency is 71% at a mass flow rate of 0.0298 kg/s. Also, flexibility between hot air from the collector and sunlight penetrating into the room is gained when the plate angles set on (30 °, 45 °, 60 °, and 90 °).
Keywords: Window solar air collector; Moveable absorbent plate; Circular-perforated absorbent plate; Solar simulator (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s0360544222017327
DOI: 10.1016/j.energy.2022.124829
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().