EconPapers    
Economics at your fingertips  
 

Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack

Dongfang Chen, Pucheng Pei, Peng Ren, Xin Song, He Wang, Lu Zhang and Mingkai Wang

Energy, 2022, vol. 258, issue C

Abstract: Buckets effect remains one of the most important factors limiting the fuel cell stack performance and lifetime. An experiment on a 16-cell stack with decreasing hydrogen concentration is conducted to investigate the effect of anode nitrogen concentration on stack performance and voltage consistency. The mean voltage decay rate of the stack is only 6% at the current density of 1.0 A cm−2, but the decay rate of the single cell with minimum voltage reaches up to 18%. The voltage standard deviation of the fuel cell stack increases by about 8 mV with the decrease in hydrogen concentration from 100% to 85%. Results show that the local voltage standard deviation is as high as 30 mV at 85% hydrogen concentration when the 16 cells are divided into four groups. The influence of local voltage consistency on the overall voltage consistency is further studied. The local voltage consistency can be served as a reliable indicator of anode purge strategy. Moreover, the uneven gas distribution amongst the cells in the stack can be analyzed and effectively detected, according to the local voltage consistency analysis with the experiment of anode nitrogen doping.

Keywords: Proton exchange membrane fuel cell; Anode nitrogen concentration; Performance degradation; Voltage consistency; Anode purge strategy; Gas distribution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017534

DOI: 10.1016/j.energy.2022.124850

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017534