Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production
Jiwon Kim,
Chanyeong Park,
Hoyoung Park,
Jeehoon Han,
Jechan Lee and
Sung-Kon Kim
Energy, 2022, vol. 258, issue C
Abstract:
Organic waste, such as cattle manure, is a serious matter of concern because of its disruptive impact on the environment. Even though disposal and reclaim of cattle manure represent the first lines of intervention to solve this problem, upcycling strategies should eventually be essential to reconvert huge amounts of the waste. In the present study, a pyrolysis process was used to reclaim value from cattle manure. Through the process, cattle manure was transformed into pyrolytic gas, pyrolytic liquid, and porous carbon material. The porous carbon material was further carbonized followed by an activation step to make a supercapacitor electrode. The electrode of a hierarchical porous carbon (termed as CMPC) is formed via carbonization and activation processes of solid residue derived from the pyrolysis of cattle manure. The bicontinuous structure of CMPC provide good ion and electron transport pathways, enabling fast charge-discharge. Specifically, in a basic solution electrolyte, CMPC electrode exhibits significant specific capacitance of 161 F g−1 at 0.4 A g−1, comparable to or even larger than other biomass-derived carbon electrodes, and high rate-performance (62% of low-capacitance). It also shows long cycle lives for at least 10,000 charge-discharge cycles at a constant current of 2.7 A g−1. As the pyrolytic gas and pyrolytic liquid had higher heating values of 7.6 MJ kg−1 and 8 MJ kg−1, respectively, they can potentially be used as fuels to supply heat and energy to the pyrolysis process. The cattle manure upcycling process could greatly contribute to the reduction in greenhouse gas emissions.
Keywords: Carbon material; Electrode; Organic waste; Recycling; Supercapacitor; Waste-to-energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017807
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017807
DOI: 10.1016/j.energy.2022.124877
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().