EconPapers    
Economics at your fingertips  
 

Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices

Xin Zhang, Jingwen Li, Yi Xiong and Yee Sin Ang

Energy, 2022, vol. 258, issue C

Abstract: A hybrid electric power generation system involving a thermoradiative power device (TPD) and a proton exchange membrane fuel cell (PEMFC) is proposed, in which the TPD can efficiently convert low-grade waste heat produced by PEMFC into electricity. Accordingly, a theoretical model is developed to investigate the output performance characteristics and the optimal design of the proposed system. The model predicts that the hybrid system can generate a maximum power density of 0.367 W/cm2 when operated at 353.15 K, possessing better output performance than other previously proposed PEMFC-based hybrid systems. The peak power density of the hybrid PEMFC-TPD device is around 1.30 times that of the PEMFC, suggesting significantly improved overall performance of the system. Additionally, the effects of radiative extraction efficiency and bandgap for the TPD to achieve optimal performance are investigated. Importantly, the optimal operating regime and the critical parameter designs concerning the hybrid system are identified, offering theoretical guidance for improving system performance. These findings provide important guidelines in designing high-performance coupled heat-to-electricity energy harvesting systems.

Keywords: Hybrid electric power system; Waste heat recovery; Thermoradiative power device; PEM fuel cell; Performance optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222018394
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222018394

DOI: 10.1016/j.energy.2022.124940

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222018394