EconPapers    
Economics at your fingertips  
 

Forward-and-reverse multidirectional turning: A novel material removal approach for improving energy efficiency, processing efficiency and quality

Yuanhui Zhang, Wei Cai, Yan He, Tao Peng, Shun Jia, Kee-hung Lai and Li Li

Energy, 2022, vol. 260, issue C

Abstract: To address the issue of high energy consumption and low utilization rate in conventional turning, a concept of forward-and-reverse multidirectional turning (MDT) and the MDT approach are proposed to reduce energy consumption in idling and to improve processing efficiency and surface quality. The material removal performance of the MDT from aspects of energy consumption, processing efficiency, chip morphology and surface quality is discussed to understand its features and advantages compared with unidirectional turning (UDT). In three application scenarios, the processing efficiency is increased by 6.40%, 8.45%, and 7.76%, and energy consumption is reduced by 10.88%, 7.25%, and 9.52%, using the MDT, respectively. Additionally, the MDT has better control ability of the chip removal, benefitting for improving the processing stability. The surface quality of the workpiece processed by the MDT is generally better than that by UDT. This study provides a novel high performance processing approach for the machining,which contributes to promoting the efficient and high-quality development of mechanical manufacturing industry.

Keywords: Turning; Energy efficiency; Processing efficiency; Surface quality; Material removal; Forward-and-reverse multidirectional turning (MDT) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222020552
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020552

DOI: 10.1016/j.energy.2022.125162

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020552