EconPapers    
Economics at your fingertips  
 

How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?

Jinyang Zhao, Yadong Yu, Hongtao Ren, Marek Makowski, Janusz Granat, Zbigniew Nahorski and Tieju Ma

Energy, 2022, vol. 261, issue PA

Abstract: There is a growing interest in the power-to-liquid (PTL) technology, especially in using electricity from renewable sources to generate H2, and then coupled with CO2 captured from various sources (e.g., coal-fired power plants) to produce liquid fuels (e.g., gasoline). As a negative emission technology, the product of PTL could be used in the internal combustion engine vehicles (ICEV) and thus cause limited shifts in current energy infrastructure and automobile industry compared with the electrification paths. However, it is still unknown whether the PTL technology could be adopted and contributed to reaching carbon neutrality in China's transportation sector. Against this, a novel model of the liquid fuel supply system considering multiple low-emission technologies, including PTL, is constructed to evaluate PTL's potential contribution and cost to the carbon-neutral target of China's transportation sector. Results show the following: First, PTL can achieve a maximum 93% carbon emission reduction compared with oil to liquid (OTL). Second, the most cost-effective deployment strategy for PTL is to increase the total cost by 5–10%. Third, international oil prices and technology-learning effects have significant impacts on the diffusion of PTL. Fourth, PTL can be a supplementary solution to achieve net-zero emissions in the transportation sector.

Keywords: Power to liquid (PTL); System optimisation; Carbon neutral; Technology learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019533
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222019533

DOI: 10.1016/j.energy.2022.125058

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222019533