Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process
Peizhe Cui,
Zaifeng Xu,
Dong Yao,
Huaqing Qi,
Zhaoyou Zhu,
Yinglong Wang,
Xin Li,
Zhiqiang Liu and
Sheng Yang
Energy, 2022, vol. 261, issue PB
Abstract:
In this study, the life cycle carbon footprint and water footprint of municipal sludge-to-hydrogen conversion by plasma gasification were analyzed. Results show that the carbon footprint of the process is 950 kg/GJ, and the water footprint is 3.21 m3/GJ in the basic scenario. The carbon footprint of the Rectisol units was the highest, accounting for 24.04%. Low-pressure nitrogen can be used for acid gas desorption to reduce carbon emissions. The life cycle water consumption comes mainly from electricity consumption (1.93 m3/GJ) and the cooling process (0.610 m3/GJ). Optimizing the electricity structure reduces the water footprint. The effects of 24 scenarios were investigated using sensitivity analysis. It was found that improving hydrogen efficiency or reducing electricity consumption can improve environmental performance. In addition, regional differences in the electricity structure can lead to differences in results. The carbon footprint of hydro-dominated regions (Sichuan, Qinghai, Tibet, and Yunnan) was only 20% of the basic scenario, while the water footprint was approximately threefold. This work presents the values of carbon emissions and water consumption within the specific scenario of municipal sludge-to-hydrogen by the plasma gasification process, providing support for its further development.
Keywords: Municipal sludge; Plasma gasification; Hydrogen production; Carbon footprint; Water footprint; Electricity structure (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202165X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pb:s036054422202165x
DOI: 10.1016/j.energy.2022.125280
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().