Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China
Wenjuan Hou,
Xueliang Zhang,
Maowei Wu,
Yuxin Feng, and
Linsheng Yang
Energy, 2022, vol. 261, issue PB
Abstract:
Renewable energy generation is a crucial route to achieve carbon neutrality. In this paper, a methodology integrating richness, stability, and complementarity to assess accommodable potential of solar and wind power generation was proposed and implemented in Ordos, a resource-based city in northwestern China. Results showed wind and especially solar resources were abundant, with maximum of 6.74 kWh/m2/day in summer and 6.9 m/s in spring based on hourly data from 1981 to 2020. Availability of solar (>60%) and wind resources (>80%) was best in the abovementioned seasons. A comprehensive evaluation of stability showed these resources were both stable in spring. Continuity of wind resources was stronger than that of solar (94.5% > 91.3%), and it's variability was also higher (1.9 > 1.4). Then, using correlation coefficients, complementarity degree of these resources was qualitatively identified as moderate. Aiming for stability, the optimal complementary ratio of solar and wind power generation was quantified at 1:0.27, with instability reduced by 10.4%–44.4%, and their power generation could be maximally accommodated by the grid. Scenario analysis predicted a maximum of 2.46% of Ordos land could meet the demand for renewable energy development in 2025. This study provides methodology and model research on orderly replacement of fossils by renewable energy in northwestern China as well as in similar regions globally.
Keywords: Improved methodology; Solar resource; Wind resource; Stability and complementarity; Generation potential; A resource-based region (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202196X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pb:s036054422202196x
DOI: 10.1016/j.energy.2022.125312
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().