Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation
Xilian Yang,
Qunfei Zhao,
Yuzhang Wang and
Kanru Cheng
Energy, 2023, vol. 262, issue PA
Abstract:
Improving efficiency through intelligence is the current development trend of industrial gas turbines. Among the fault statistics of gas turbines, the number of sensor fault is the highest during use. The fault signal diagnosis and reconstruction are of great significance to the efficient and safe operation of gas turbines. In order to eliminate the sensor fault signal and transmit the normal signal to the control system, a multivariate fault signal reconstruction method based on the prior knowledge of the time-series representation was proposed in this work. The proposed multivariate signal reconstruction method can reconstruct almost all fault cases with high accuracy by training only one model. Firstly, the prior knowledge is applied to improve the conventional time series data representation. Secondly, three steps are employed to utilize spatial or temporal information and obtain three intermediate data. The masks combine the third intermediate data and the original time series to obtain the final reconstruction results. Then, reconstruction data sets are built based on exhaust gas temperatures (EGTs) from real-world power plant to verify the effectiveness of the proposed method. Different evaluation metrics and visualization reveal the high accuracy results. Compared results with different reconstruction algorithms reflect both the robustness and high speed of this reconstruction method. Finally, three typical fault signal reconstruction cases reveal the generalizability of this model.
Keywords: Time series representation; Fault signal reconstruction; Recurrent neural network; Multi-sensor data; Gas turbine control systems (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422201893X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pa:s036054422201893x
DOI: 10.1016/j.energy.2022.124996
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().