Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods
Abolfazl Sajadi Noushabadi,
Ebrahim Nemati Lay,
Amir Dashti,
Amir H. Mohammadi,
Abdoulmohammad Gholamzadeh Chofreh,
Feybi Ariani Goni and
Jiří Jaromír Klemeš
Energy, 2023, vol. 262, issue PA
Abstract:
The thermophysical properties of refrigerating systems should be accurately understood for designing low-temperature refrigeration cycles of economic acceptance. The present work has tried to simplify this complicated procedure by proposing reliable and new correlative methods for determining thermodynamic and transport properties of four refrigerating substance classes, namely halocarbon, inorganic, hydrocarbon, and cryogenic fluids. New machine learning methods e.g., particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS), genetic programming (GP), and hybrid adaptive neuro-fuzzy inference system (Hybrid ANFIS) algorithms were utilised. The development of a new, simple and comprehensive correlation was for the first time introduced to estimate saturated vapour enthalpy, entropy, velocity of sound, and viscosity of refrigerants without having in-depth knowledge of complicated parameters. The accuracy and validity of the proposed models were assessed using a variety of statistical and graphical demonstrations. The findings were compared, and it was found that Hybrid ANFIS models are more accurate because Absolute Average Relative Errors (%AARD) for enthalpy, entropy, the velocity of sound, and viscosity were estimated as 0.5558, 1.3105, 0.5215, and 1.5727 in respective order. In addition, the proposed models' results were compared to the results of recently previously published models, and it confirms the reliability of our results. The innovation of this research is the design of reliable correlative methods having elevated precisions for thermodynamic and transport specifications of refrigerating substances.
Keywords: Refrigerants; Thermodynamic properties; Transport properties; Machine learning; Correlation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019946
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222019946
DOI: 10.1016/j.energy.2022.125099
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().