EconPapers    
Economics at your fingertips  
 

Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles

Yongming Yao, Jie Wang, Zhicong Zhou, Hang Li, Huiying Liu and Tianyu Li

Energy, 2023, vol. 262, issue PA

Abstract: The energy management problem of hybrid unmanned aerial vehicles (UAVs) is studied in this paper, and an energy management strategy based on hierarchical model predictive control (HMPC) is proposed. The structure of HMPC is divided into the trajectory optimization layer and the control layer. The trajectory optimization layer primarily considers the factors like economic costs, including hydrogen consumption, equipment purchase, use costs, and equipment lifetime. To determine the optimal trajectory of the battery state of charge, the trajectory optimization layer is optimized and solved. The control layer is model predictive control, and its key function is to follow the reference trajectory to obtain the optimal fuel cell output power. A grey Markov prediction model is proposed and used to predict the future power demand of UAVs. The superiority of the prediction model is demonstrated by comparing it with the typical prediction methods. Based on the simulation and experimental comparison, it can be concluded that the effect of the HMPC is satisfactory and has a positive impact on the endurance of the UAV.

Keywords: Fuel cell; Energy management; Unmanned aerial vehicles; Model predictive control; Grey Markov prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222022873
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022873

DOI: 10.1016/j.energy.2022.125405

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022873