Numerical study of ignition process in vortex cold wall combustion chamber
Kaifang Guo,
Dechuan Sun and
Zhuoxiong Zeng
Energy, 2023, vol. 262, issue PA
Abstract:
Numerical simulation in a hydrogen-oxygen vortex cold-wall combustion chamber is carried out to analyze the effects of energy density, spark duration, and spark position on the ignition process. The results show that energy density not only determines whether ignition is successful or not but also affects ignition delay time. For the same spark energy, spark duration is key to the success of ignition. When spark duration is short, despite its higher energy density, the spark exothermic duration may be lower than the ignition delay time, which leads to ignition failure, so a longer spark duration should be selected as much as possible. Spark position can affect the success probability of the ignition, and has an important influence on the combustion stability. When the spark is placed near an area with high hydrogen concentration, it can increase the success probability and shortens ignition delay time, but combustion stability is poor and the temperature distribution in the combustion chamber shows obvious asymmetry. The ignition delay time of the engine is between 260μs-300μs, and the pressure response during the ignition start of the engine is obtained.
Keywords: Spark ignition; Detailed mechanisms; Energy density; Hydrogen-oxygen combustion; Numerical simulation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222023258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023258
DOI: 10.1016/j.energy.2022.125443
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().