EconPapers    
Economics at your fingertips  
 

An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring

Jiangfan Chen, Zheng Fang, Ali Azam, Xiaoping Wu, Zutao Zhang, Linhai Lu and Dongyang Li

Energy, 2023, vol. 262, issue PA

Abstract: With the popularity and application of Autonomous-rail rapid transit in China, the status of drivers has also attracted more attention to reducing the number of accidents on complex urban roads. The previously used sensors to monitor driver status require external power, limiting the further development and application of the sensor. This paper proposes a sensor energy self-circulation system based on a copper foam heatsink using the wearable thermoelectric harvester. The proposed method consists of a thermoelectric harvester, boost circuit, and sensor module. The thermoelectric harvester module uses the wearable thermoelectric harvester to convert the waste heat of the human body into electric energy, the copper foam heatsink is used to enhance the heat dissipation capacity, and the PDMS film is used to reduce the heat loss. The DC-DC boost circuit module uses the LTC3108 to pull up the voltage to the starting voltage of the sensor and realizes power management. The sensor module uses the ultra-low-power sensor ADLX362 to detect changes in acceleration values. The experimental results show that the maximum output power of the system to the human body at a wind speed of 1.5 m/s is 145.7 μW, which can realize the self-powered applications of the proposed sensor. The result proves the feasibility of a sensor energy self-circulation system using the wearable thermoelectric harvester based on a copper foam heatsink to monitor the status of drivers.

Keywords: Energy harvester; Self-circulation system; Wearable thermoelectric; Copper foam heatsink; Driver monitoring (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222023544
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023544

DOI: 10.1016/j.energy.2022.125472

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023544