Negative carbon dioxide gas power plant integrated with gasification of sewage sludge
Paweł Ziółkowski,
Kamil Stasiak,
Milad Amiri and
Dariusz Mikielewicz
Energy, 2023, vol. 262, issue PB
Abstract:
One of the primary objectives of the negative carbon dioxide gas power plant (nCO2PP) is to develop an innovative technology confirming the possibility of the use of sewage sludge to produce electricity while having a positive impact on the environment. In this paper, a mathematical model is presented to estimate thermodynamic parameters of the system in relation to the gasification process and changes in such parameters in the bleeds as well as temperature and pressure. The main novelty of this paper is the integration of the gas-steam turbine model with the gasification reactor model in such a way that the effect of the gasification products on the turbine output is established. In turn, parameters from the turbine bleed directly affect the gasification process and cause feedback for the system. Developed code allows determination of parameters such as efficiency of the proposed nCO2PP cycle, gas composition from the gasifier, temperature in the gas turbine bleed and other related information. The synergy between the CCS plant and the proposed utilization of sewage sludge (which is considered as a renewable energy source) enables the installation to achieve negative overall emissions of CO2.
Keywords: Bioenergy with carbon capture and storage; Thermodynamic analysis; CO2 negative power plant; Gas-steam turbine bleed; Waste gasification; Energy-from-waste (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222023787
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023787
DOI: 10.1016/j.energy.2022.125496
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().