EconPapers    
Economics at your fingertips  
 

Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs

Mustafa Ercelik, Mohammed S. Ismail, Derek B. Ingham, Kevin J. Hughes, Lin Ma and Mohamed Pourkashanian

Energy, 2023, vol. 262, issue PB

Abstract: Nickel foams are excellent candidate materials for gas diffusion layers (GDLs) for polymer electrolyte fuel cells (PEFCs) and this is due to their superior structural and transport properties. A highly computationally-efficient framework has been developed to not only estimate the key structural and mass transport properties but also to examine the multi-dimensional uniformity and/or the isotropy of these properties. Specifically, multiple two-dimensional X-ray CT images and/or numerical models have been used to computationally determine the porosity, the tortuosity, the pore size distribution, the ligament thickness, the specific surface area, the gas permeability and the effective diffusivity of a typical nickel foam sample. The results show that, compared to the conventionally used carbon substrate, the nickel foam sample demonstrate a high degree of uniformity and isotropy and that it has superior structural and mass transport properties, thus underpinning its candidacy as a GDL material for PEFCs. All the computationally-estimated properties, which were found to be consistent with the corresponding literature data, have been presented and thoroughly discussed.

Keywords: Polymer electrolyte fuel cell; Gas diffusion layer; Nickel foam; X-ray computed tomography; Structural characteristics; Mass transport characteristics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024136

DOI: 10.1016/j.energy.2022.125531

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024136