EconPapers    
Economics at your fingertips  
 

Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating

Hao Sha, Bo Zhao, Yuyi Yang, Yanhui Zhang, Pengfei Zheng, Shengxian Cao, Qing Wang and Gong Wang

Energy, 2023, vol. 262, issue PB

Abstract: The effects of combining magnetized cellulase (MC) with Ni-graphite (NG) coated materials on the anaerobic digestion of corn stover were investigated. In pretreatment of the corn stover, cellulase showed higher glycosylation efficiency in a 30 mT magnetic field environment than in other magnetic fields, and the reducing sugar content reached 0.182 mg/L. Treatment with the combination of magnetized cellulase and Ni-graphite coated material resulted in a 74.35% increase in cumulative CH4 yield. Analysis of the composition of the microbial community showed that the addition of Ni-graphite coating significantly influenced the composition of the microbial community. The electrically active microorganisms Bacteroidota (46.98%) and Methanomicrobiales (6.08%) became the dominant bacteria and archaea when the corn stover was treated with the NG+MC combination. Carbon balance calculations showed that the combination treatment resulted in carbon flow distributions that differed from other treatments, and the energy conversion efficiency (ECE) reached 57.1%.

Keywords: Anaerobic digestion; Methane; Corn stover; Magnetized cellulase; Ni-graphite coating material; Microbial community (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024148

DOI: 10.1016/j.energy.2022.125532

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024148