Effect of asymmetric fuel injection on combustion characteristics and NOx emissions of a hydrogen opposed rotary piston engine
Junfeng Huang,
Jianbing Gao,
Yufeng Wang,
Ce Yang,
Chaochen Ma and
Guohong Tian
Energy, 2023, vol. 262, issue PB
Abstract:
Opposed rotary piston engines have the characteristics of high-power density and simple mechanisms. The applications of hydrogen fuel to internal combustion engines significantly are without carbon dioxide emission, alleviating the global warming. In this paper, hydrogen fuel was asymmetrically injected into combustion chambers to increase hydrogen penetration distance via; in the meantime, the engine performance and nitrogen monoxide (NO) emission with different ignition timing are explored by numerical simulation method. The symmetrical fuel injection scenario was provided as a baseline. In the scenarios of asymmetrical fuel injection, the engine had the best hydrogen injector position and ignition timing. Peak in-cylinder pressure Pmax reached 56.0 bar under ignition timing ti of −14.2° CA before top dead centre (bTDC) and hydrogen injector position (θ2) of 60.5°; in the meantime, heat loss rate HL and heat release rate Qr reached maximum values. Compared with the symmetric fuel injection engine, the peak NO emission of the asymmetric fuel injection engine was reduced by 15%. The proportions of energy loss by cylinder walls of asymmetric fuel injection engine were low and showed low dependency on ignition timing and hydrogen injector layout. Additionally, the asymmetric hydrogen injection structure makes hydrogen distribute evenly in the combustion chamber.
Keywords: Opposed rotary piston engine; Direct hydrogen injection; Asymmetrical injector layout; Combustion characteristics; NO emission (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024306
DOI: 10.1016/j.energy.2022.125544
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().