Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology
Deming Yang,
Dehao Wan,
Yi Yun and
Shuzhuang Yang
Energy, 2023, vol. 262, issue PB
Abstract:
Trichlorobenzene is a mixture of three isomers which are 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene and 1,3,5-trichlorobenzene. Due to the boiling points of the three components are close to each other, the adoption of conventional distillation process requires a large amount of energy. To reduce the distillation energy consumption, heat integration technology and mechanical vapor recompression (MVR) heat pump technology are applied to the separation of the system. Since the waste heat in the MVR heat pump distillation process has not been utilized, the Organic Rankine cycle (ORC) coupled MVR heat pump distillation process was proposed to convert waste heat to electricity for the compressor and the parameters of the ORC system are optimized to determine the optimal working fluid and its parameters. The study results showed that compared with the four-column conventional distillation process, the heat integrated distillation process and MVR heat pump distillation process can reduce energy consumption by 32.7% and 83.5%, save the total annual cost (TAC) by 12.4% and 22.9%; the ORC coupled MVR heat pump distillation process with the best working fluid were R113 and R601a can reduce energy consumption by 18.8% and save TAC by 1.42% compared with the MVR heat pump distillation process.
Keywords: Trichlorobenzene; Heat integration; MVR heat Pump; Organic rankine cycle; Energy consumption; Total annual cost (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024513
DOI: 10.1016/j.energy.2022.125565
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().