Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling
Zhi Zhang,
Baojiang Sun,
Zhiyuan Wang,
Xiaojie Mu and
Dalin Sun
Energy, 2023, vol. 262, issue PB
Abstract:
As the key equipment to achieve accurate control of wellhead pressure during managed pressure drilling, the throttle valve can ensure the bottom hole pressure accurately controllable during the migration of invading gas in the annulus. At present, most of the research focuses on the throttling characteristics of single-phase fluid, and the research on the pressure regulation characteristics of throttle valve under the condition of multiphase flow is still relatively weak. In this paper, the mathematical model and CFD model of multiphase flow in the throttle valve are established, and the multiphase throttling characteristics under different hydraulic parameters are studied. The rationality of the proposed model is verified by field full-scale experiments. The results show that throttling pressure drop shows a nonlinear trend with the opening, which is not conducive to field application. Furthermore, through the sensitivity analysis of the throttle characteristic curve under multiphase flow conditions, the geometric structure of the throttle valve core is optimized to realize the fine adjustment of the wellhead back pressure under multiphase flow conditions, which is of guiding significance for wellbore pressure control under gas invasion condition.
Keywords: Managed pressure drilling; Multiphase flow; Pressure regulation; CFD simulation; Throttle valve core; Throttle characteristic curve (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222025051
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222025051
DOI: 10.1016/j.energy.2022.125619
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().